Categories
backdoors Banking Credentials Cryptography Intelwars Malware Reports

Bizarro Banking Trojan

Bizarro is a new banking trojan that is stealing financial information and crypto wallets.

…the program can be delivered in a couple of ways­ — either via malicious links contained within spam emails, or through a trojanized app. Using these sneaky methods, trojan operators will implant the malware onto a target device, where it will install a sophisticated backdoor that “contains more than 100 commands and allows the attackers to steal online banking account credentials,” the researchers write.

The backdoor has numerous commands built in to allow manipulation of a targeted individual, including keystroke loggers that allow for harvesting of personal login information. In some instances, the malware can allow criminals to commandeer a victim’s crypto wallet, too.

Research report.

Share
Categories
Cryptography foia history of cryptography Intelwars NSA

Newly Unclassified NSA Document on Cryptography in the 1970s

This is a newly unclassified NSA history of its reaction to academic cryptography in the 1970s: “New Comes Out of the Closet: The Debate over Public Cryptography in the Inman Era,” Cryptographic Quarterly, Spring 1996, author still classified.

Share
Categories
Cryptanalysis Cryptography Intelwars rsa

No, RSA Is Not Broken

I have been seeing this paper by cryptographer Peter Schnorr making the rounds: “Fast Factoring Integers by SVP Algorithms.” It describes a new factoring method, and its abstract ends with the provocative sentence: “This destroys the RSA cryptosystem.”

It does not. At best, it’s an improvement in factoring — and I’m not sure it’s even that. The paper is a preprint: it hasn’t been peer reviewed. Be careful taking its claims at face value.

Some discussion here.

I’ll append more analysis links to this post when I find them.

Share
Categories
Cryptography Games Intelwars

US Cyber Command Valentine’s Day Cryptography Puzzles

The US Cyber Command has released a series of ten Valentine’s Day “Cryptography Challenge Puzzles.”

Slashdot thread. Reddit thread. (And here’s the archived link, in case Cyber Command takes the page down.)

Share
Categories
Cloning Cryptography google Hardware Intelwars side-channel attacks two-factor authentication

Cloning Google Titan 2FA keys

This is a clever side-channel attack:

The cloning works by using a hot air gun and a scalpel to remove the plastic key casing and expose the NXP A700X chip, which acts as a secure element that stores the cryptographic secrets. Next, an attacker connects the chip to hardware and software that take measurements as the key is being used to authenticate on an existing account. Once the measurement-taking is finished, the attacker seals the chip in a new casing and returns it to the victim.

Extracting and later resealing the chip takes about four hours. It takes another six hours to take measurements for each account the attacker wants to hack. In other words, the process would take 10 hours to clone the key for a single account, 16 hours to clone a key for two accounts, and 22 hours for three accounts.

By observing the local electromagnetic radiations as the chip generates the digital signatures, the researchers exploit a side channel vulnerability in the NXP chip. The exploit allows an attacker to obtain the long-term elliptic curve digital signal algorithm private key designated for a given account. With the crypto key in hand, the attacker can then create her own key, which will work for each account she targeted.

The attack isn’t free, but it’s not expensive either:

A hacker would first have to steal a target’s account password and also gain covert possession of the physical key for as many as 10 hours. The cloning also requires up to $12,000 worth of equipment and custom software, plus an advanced background in electrical engineering and cryptography. That means the key cloning — ­were it ever to happen in the wild — ­would likely be done only by a nation-state pursuing its highest-value targets.

That last line about “nation-state pursuing its highest-value targets” is just not true. There are many other situations where this attack is feasible.

Note that the attack isn’t against the Google system specifically. It exploits a side-channel attack in the NXP chip. Which means that other systems are probably vulnerable:

While the researchers performed their attack on the Google Titan, they believe that other hardware that uses the A700X, or chips based on the A700X, may also be vulnerable. If true, that would include Yubico’s YubiKey NEO and several 2FA keys made by Feitian.

Share
Categories
academic papers Cryptography cyberattack Cybersecurity Data Protection Intelwars

Extracting Personal Information from Large Language Models Like GPT-2

Researchers have been able to find all sorts of personal information within GPT-2. This information was part of the training data, and can be extracted with the right sorts of queries.

Paper: “Extracting Training Data from Large Language Models.”

Abstract: It has become common to publish large (billion parameter) language models that have been trained on private datasets. This paper demonstrates that in such settings, an adversary can perform a training data extraction attack to recover individual training examples by querying the language model.

We demonstrate our attack on GPT-2, a language model trained on scrapes of the public Internet, and are able to extract hundreds of verbatim text sequences from the model’s training data. These extracted examples include (public) personally identifiable information (names, phone numbers, and email addresses), IRC conversations, code, and 128-bit UUIDs. Our attack is possible even though each of the above sequences are included in just one document in the training data.

We comprehensively evaluate our extraction attack to understand the factors that contribute to its success. For example, we find that larger models are more vulnerable than smaller models. We conclude by drawing lessons and discussing possible safeguards for training large language models.

From a blog post:

We generated a total of 600,000 samples by querying GPT-2 with three different sampling strategies. Each sample contains 256 tokens, or roughly 200 words on average. Among these samples, we selected 1,800 samples with abnormally high likelihood for manual inspection. Out of the 1,800 samples, we found 604 that contain text which is reproduced verbatim from the training set.

The rest of the blog post discusses the types of data they found.

Share
Categories
aes algorithms Cryptography e-mail Encryption hashes Intelwars rsa UK

Brexit Deal Mandates Old Insecure Crypto Algorithms

In what is surely an unthinking cut-and-paste issue, page 921 of the Brexit deal mandates the use of SHA-1 and 1024-bit RSA:

The open standard s/MIME as extension to de facto e-mail standard SMTP will be deployed to encrypt messages containing DNA profile information. The protocol s/MIME (V3) allows signed receipts, security labels, and secure mailing lists… The underlying certificate used by s/MIME mechanism has to be in compliance with X.509 standard…. The processing rules for s/MIME encryption operations… are as follows:

  1. the sequence of the operations is: first encryption and then signing,
  2. the encryption algorithm AES (Advanced Encryption Standard) with 256 bit key length and RSA with 1,024 bit key length shall be applied for symmetric and asymmetric encryption respectively,
  3. the hash algorithm SHA-1 shall be applied.
  4. s/MIME functionality is built into the vast majority of modern e-mail software packages including Outlook, Mozilla Mail as well as Netscape Communicator 4.x and inter-operates among all major e-mail software packages.

And s/MIME? Bleah.

Share
Categories
academic papers Cryptography Encryption Intelwars

Indistinguishability Obfuscation

Quanta magazine recently published a breathless article on indistinguishability obfuscation — calling it the “‘crown jewel’ of cryptography” — and saying that it had finally been achieved, based on a recently published paper. I want to add some caveats to the discussion.

Basically, obfuscation makes a computer program “unintelligible” by performing its functionality. Indistinguishability obfuscation is more relaxed. It just means that two different programs that perform the same functionality can’t be distinguished from each other. A good definition is in this paper.

This is a pretty amazing theoretical result, and one to be excited about. We can now do obfuscation, and we can do it using assumptions that make real-world sense. The proofs are kind of ugly, but that’s okay — it’s a start. What it means in theory is that we have a fundamental theoretical result that we can use to derive a whole bunch of other cryptographic primitives.

But — and this is a big one — this result is not even remotely close to being practical. We’re talking multiple days to perform pretty simple calculations, using massively large blocks of computer code. And this is likely to remain true for a very long time. Unless researchers increase performance by many orders of magnitude, nothing in the real world will make use of this work anytime soon.

But but, consider fully homomorphic encryption. It, too, was initially theoretically interesting and completely impractical. And now, after decades of work, it seems to be almost just-barely maybe approaching practically useful. This could very well be on the same trajectory, and perhaps in twenty to thirty years we will be celebrating this early theoretical result as the beginning of a new theory of cryptography.

Share
Categories
Cryptography Intelwars Video

Seny Kamara on "Crypto for the People"

Seny Kamara gave an excellent keynote talk this year at the (online) CRYPTO Conference. He talked about solving real-world crypto problems for marginalized communities around the world, instead of crypto problems for governments and corporations. Well worth watching and listening to.

Share
Categories
Cryptography Intelwars Video

Seny Kamara on “Crypto for the People”

Seny Kamara gave an excellent keynote talk this year at the (online) CRYPTO Conference. He talked about solving real-world crypto problems for marginalized communities around the world, instead of crypto problems for governments and corporations. Well worth watching and listening to.

Share
Categories
Cryptography Intelwars Video

Seny Kamara on “Crypto for the People”

Seny Kamara gave an excellent keynote talk this year at the (online) CRYPTO Conference. He talked about solving real-world crypto problems for marginalized communities around the world, instead of crypto problems for governments and corporations. Well worth watching and listening to.

Share
Categories
Cryptography Intelwars keys Passwords

DiceKeys

DiceKeys is a physical mechanism for creating and storing a 192-bit key. The idea is that you roll a special set of twenty-five dice, put them into a plastic jig, and then use an app to convert those dice into a key. You can then use that key for a variety of purposes, and regenerate it from the dice if you need to.

This week Stuart Schechter, a computer scientist at the University of California, Berkeley, is launching DiceKeys, a simple kit for physically generating a single super-secure key that can serve as the basis for creating all the most important passwords in your life for years or even decades to come. With little more than a plastic contraption that looks a bit like a Boggle set and an accompanying web app to scan the resulting dice roll, DiceKeys creates a highly random, mathematically unguessable key. You can then use that key to derive master passwords for password managers, as the seed to create a U2F key for two-factor authentication, or even as the secret key for cryptocurrency wallets. Perhaps most importantly, the box of dice is designed to serve as a permanent, offline key to regenerate that master password, crypto key, or U2F token if it gets lost, forgotten, or broken.

[…]

Schechter is also building a separate app that will integrate with DiceKeys to allow users to write a DiceKeys-generated key to their U2F two-factor authentication token. Currently the app works only with the open-source SoloKey U2F token, but Schechter hopes to expand it to be compatible with more commonly used U2F tokens before DiceKeys ship out. The same API that allows that integration with his U2F token app will also allow cryptocurrency wallet developers to integrate their wallets with DiceKeys, so that with a compatible wallet app, DiceKeys can generate the cryptographic key that protects your crypto coins too.

Here’s the DiceKeys website and app. Here’s a short video demo. Here’s a longer SOUPS talk.

Preorder a set here.

Note: I am an adviser on the project.

Another news article. Slashdot thread. Hacker News thread. Reddit thread.

Share
Categories
Bitcoin Cryptanalysis Cryptocurrency Cryptography Encryption Intelwars

Cryptanalysis of an Old Zip Encryption Algorithm

Mike Stay broke an old zipfile encryption algorithm to recover $300,000 in bitcoin.

DefCon talk here.

Share
Categories
Cryptography Cybersecurity Intelwars NIST quantumcomputing quantumcryptography

Update on NIST’s Post-Quantum Cryptography Program

NIST has posted an update on their post-quantum cryptography program:

After spending more than three years examining new approaches to encryption and data protection that could defeat an assault from a quantum computer, the National Institute of Standards and Technology (NIST) has winnowed the 69 submissions it initially received down to a final group of 15. NIST has now begun the third round of public review. This “selection round” will help the agency decide on the small subset of these algorithms that will form the core of the first post-quantum cryptography standard.

[…]

For this third round, the organizers have taken the novel step of dividing the remaining candidate algorithms into two groups they call tracks. The first track contains the seven algorithms that appear to have the most promise.

“We’re calling these seven the finalists,” Moody said. “For the most part, they’re general-purpose algorithms that we think could find wide application and be ready to go after the third round.”

The eight alternate algorithms in the second track are those that either might need more time to mature or are tailored to more specific applications. The review process will continue after the third round ends, and eventually some of these second-track candidates could become part of the standard. Because all of the candidates still in play are essentially survivors from the initial group of submissions from 2016, there will also be future consideration of more recently developed ideas, Moody said.

“The likely outcome is that at the end of this third round, we will standardize one or two algorithms for encryption and key establishment, and one or two others for digital signatures,” he said. “But by the time we are finished, the review process will have been going on for five or six years, and someone may have had a good idea in the interim. So we’ll find a way to look at newer approaches too.”

Details are here. This is all excellent work, and exemplifies NIST at its best. The quantum-resistant algorithms will be standardized far in advance of any practical quantum computer, which is how we all want this sort of thing to go.

Share
Categories
Cryptography Cybersecurity Intelwars NSA securityanalysis VPN

NSA on Securing VPNs

The NSA’s Central Security Service — that’s the part that’s supposed to work on defense — has released two documents (a full and an abridged version) on securing virtual private networks. Some of it is basic, but it contains good information.

Maintaining a secure VPN tunnel can be complex and requires regular maintenance. To maintain a secure VPN, network administrators should perform the following tasks on a regular basis:

  • Reduce the VPN gateway attack surface
  • Verify that cryptographic algorithms are Committee on National Security Systems Policy (CNSSP) 15-compliant
  • Avoid using default VPN settings
  • Remove unused or non-compliant cryptography suites
  • Apply vendor-provided updates (i.e. patches) for VPN gateways and clients
Share
Categories
Cryptanalysis Cryptography historyofcryptography Intelwars War

Ann Mitchell, Bletchley Park Cryptanalyst, Dies

Obituary.

Share
Categories
backdoors Cryptanalysis Cryptography historyofcryptography historyofsecurity Intelwars

Another Story of Bad 1970s Encryption

This one is from the Netherlands. It seems to be clever cryptanalysis rather than a backdoor.

The Dutch intelligence service has been able to read encrypted communications from dozens of countries since the late 1970s thanks to a microchip, according to research by de Volkskrant on Thursday. The Netherlands could eavesdrop on confidential communication from countries such as Iran, Egypt and Saudi Arabia.

Philips, together with Siemens, built an encryption machine in the late 1970s. The device, the Aroflex, was used for secret communication between NATO allies. In addition, the companies also wanted to market the T1000CA, a commercial variant of the Aroflex with less strong cryptography.

The Volkskrant investigation shows that the Ministry of Foreign Affairs and the Marine Intelligence Service (MARID) cracked the cryptography of this device before it was launched. Philips helped the ministry and the intelligence service.

Normally it would take at least a month and a half to crack the T1000CA encryption. “Too long to get useful information from intercepted communication,” the newspaper writes. But MARID employees, together with Philips, succeeded in accelerating this 2.500 times by developing a special microchip.

The T1000CA was then sold to numerous non-NATO countries, including the Middle East and Asia. These countries could then be overheard by the Dutch intelligence services for years.

The 1970s was a decade of really bad commercial cryptography. DES, in 1975, was an improvement with its 56-bit key. I’m sure there are lots of these stories.

Here’s more about the Aroflex. And here’s what I think is the original Dutch story.

Share
Categories
Crowdsourcing Cryptography Encryption Intelwars rsa

RSA-250 Factored

RSA-250 has been factored.

This computation was performed with the Number Field Sieve algorithm,
using the open-source CADO-NFS software.

The total computation time was roughly 2700 core-years, using Intel Xeon Gold 6130 CPUs as a reference (2.1GHz):

RSA-250 sieving: 2450 physical core-years
RSA-250 matrix: 250 physical core-years

The computation involved tens of thousands of machines worldwide, and was completed in a few months.

News article. On the factoring challenges.

Share
Categories
backdoors Children Cryptography cryptowars Encryption Intelwars

The EARN-IT Act

Prepare for another attack on encryption in the U.S. The EARN-IT Act purports to be about protecting children from predation, but it’s really about forcing the tech companies to break their encryption schemes:

The EARN IT Act would create a “National Commission on Online Child Sexual Exploitation Prevention” tasked with developing “best practices” for owners of Internet platforms to “prevent, reduce, and respond” to child exploitation. But far from mere recommendations, those “best practices” would be approved by Congress as legal requirements: if a platform failed to adhere to them, it would lose essential legal protections for free speech.

It’s easy to predict how Attorney General William Barr would use that power: to break encryption. He’s said over and over that he thinks the “best practice” is to force encrypted messaging systems to give law enforcement access to our private conversations. The Graham-Blumenthal bill would finally give Barr the power to demand that tech companies obey him or face serious repercussions, including both civil and criminal liability. Such a demand would put encryption providers like WhatsApp and Signal in an awful conundrum: either face the possibility of losing everything in a single lawsuit or knowingly undermine their users’ security, making all of us more vulnerable to online criminals.

Matthew Green has a long explanation of the bill and its effects:

The new bill, out of Lindsey Graham’s Judiciary committee, is designed to force providers to either solve the encryption-while-scanning problem, or stop using encryption entirely. And given that we don’t yet know how to solve the problem — and the techniques to do it are basically at the research stage of R&D — it’s likely that “stop using encryption” is really the preferred goal.

EARN IT works by revoking a type of liability called Section 230 that makes it possible for providers to operate on the Internet, by preventing the provider for being held responsible for what their customers do on a platform like Facebook. The new bill would make it financially impossible for providers like WhatsApp and Apple to operate services unless they conduct “best practices” for scanning their systems for CSAM.

Since there are no “best practices” in existence, and the techniques for doing this while preserving privacy are completely unknown, the bill creates a government-appointed committee that will tell technology providers what technology they have to use. The specific nature of the committee is byzantine and described within the bill itself. Needless to say, the makeup of the committee, which can include as few as zero data security experts, ensures that end-to-end encryption will almost certainly not be considered a best practice.

So in short: this bill is a backdoor way to allow the government to ban encryption on commercial services. And even more beautifully: it doesn’t come out and actually ban the use of encryption, it just makes encryption commercially infeasible for major providers to deploy, ensuring that they’ll go bankrupt if they try to disobey this committee’s recommendations.

It’s the kind of bill you’d come up with if you knew the thing you wanted to do was unconstitutional and highly unpopular, and you basically didn’t care.

Another criticism of the bill. Kinder analysis.

Sign a petition against this act.

Share
Categories
backdoors CIA Cryptography intelligence Intelwars privacy Surveillance

More on Crypto AG

One follow-on to the story of Crypto AG being owned by the CIA: this interview with a Washington Post reporter. The whole thing is worth reading or listening to, but I was struck by these two quotes at the end:

…in South America, for instance, many of the governments that were using Crypto machines were engaged in assassination campaigns. Thousands of people were being disappeared, killed. And I mean, they’re using Crypto machines, which suggests that the United States intelligence had a lot of insight into what was happening. And it’s hard to look back at that history now and see a lot of evidence of the United States going to any real effort to stop it or at least or even expose it.

[…]

To me, the history of the Crypto operation helps to explain how U.S. spy agencies became accustomed to, if not addicted to, global surveillance. This program went on for more than 50 years, monitoring the communications of more than 100 countries. I mean, the United States came to expect that kind of penetration, that kind of global surveillance capability. And as Crypto became less able to deliver it, the United States turned to other ways to replace that. And the Snowden documents tell us a lot about how they did that.

Share
Categories
backdoors CIA Cryptography Espionage Intelwars Switzerland

Crypto AG Was Owned by the CIA

The Swiss cryptography firm Crypto AG sold equipment to governments and militaries around the world for decades after World War II. They were owned by the CIA:

But what none of its customers ever knew was that Crypto AG was secretly owned by the CIA in a highly classified partnership with West German intelligence. These spy agencies rigged the company’s devices so they could easily break the codes that countries used to send encrypted messages.

This isn’t really news. We have long known that Crypto AG was backdooring crypto equipment for the Americans. What is new is the formerly classified documents describing the details:

The decades-long arrangement, among the most closely guarded secrets of the Cold War, is laid bare in a classified, comprehensive CIA history of the operation obtained by The Washington Post and ZDF, a German public broadcaster, in a joint reporting project.

The account identifies the CIA officers who ran the program and the company executives entrusted to execute it. It traces the origin of the venture as well as the internal conflicts that nearly derailed it. It describes how the United States and its allies exploited other nations’ gullibility for years, taking their money and stealing their secrets.

The operation, known first by the code name “Thesaurus” and later “Rubicon,” ranks among the most audacious in CIA history.

EDITED TO ADD: MOre news article. And a 1995 story on this. It’s not new news.

Share
Categories
CIA Cryptography Encryption hacking Intelwars NSA

A New Clue for the Kryptos Sculpture

Jim Sanborn, who designed the Kryptos sculpture in a CIA courtyard, has released another clue to the still-unsolved part 4. I think he’s getting tired of waiting.

Did we mention Mr. Sanborn is 74?

Holding on to one of the world’s most enticing secrets can be stressful. Some would-be codebreakers have appeared at his home.

Many felt they had solved the puzzle, and wanted to check with Mr. Sanborn. Sometimes forcefully. Sometimes, in person.

Elonka Dunin, a game developer and consultant who has created a rich page of background information on the sculpture and oversees the best known online community of thousands of Kryptos fans, said that some who contact her (sometimes also at home) are obsessive and appear to have tipped into mental illness. “I am always gentle to them and do my best to listen to them,” she said.

Mr. Sanborn has set up systems to allow people to check their proposed solutions without having to contact him directly. The most recent incarnation is an email-based process with a fee of $50 to submit a potential solution. He receives regular inquiries, so far none of them successful.

The ongoing process is exhausting, he said, adding “It’s not something I thought I would be doing 30 years on.”

Another news article.

EDITED TO ADD (2/13): Another article.

Share
Categories
Cryptography Encryption Intelwars Steganography

Tree Code

Artist Katie Holten has developed a tree code (basically, a font in trees), and New York City is using it to plant secret messages in parks.

Share